Lavoisier Lavoisier Lavoisier Lavoisier

Résumé

Optimisation en sciences de l’ingénieur présente les méthodes d’optimisation utilisées dans les domaines de la programmation évolutionnaire, des problèmes à critère stochastique et de la décision assistée par ordinateur. Dans le cas des problèmes incertains ou mal définis, éventuellement soumis à des perturbations aléatoires ou pour lesquels la recherche de solution risque de tomber sur l’explosion combinatoire, les méthodes exactes s’avèrent le plus souvent inexploitables dans un temps raisonnable. Les algorithmes décrits dans ce volume permettent de résoudre les problèmes rapidement. Illustré d’exemples sur les méthodes proposées, cet ouvrage précise également les champs d’applications possibles des algorithmes concernés.

Sommaire

Avant-propos

Chapitre 1. Métaheuristiques – Méthodes locales

1.1. Contexte général

1.2. Principe de Monte-Carlo

1.3. Ascension de la montagne

1.4. Recherche Tabou

1.5. Recuit simulé

1.6. Tunneling

1.7. Méthode GRASP

Chapitre 2. Métaheuristiques – Méthodes globales

2.1. Principe des métaheuristiques évolutionnaires (à stratégie d’évolution)

2.2. Algorithmes génétiques

2.3. Ascension de la montagne par stratégies d’évolution

2.4. Optimisation par colonie de fourmis

2.5. Optimisation par essaims particulaires

2.6. Optimisation par recherche harmonique

Chapitre 3. Optimisation stochastique

3.1. Introduction

3.2. Problème d’optimisation stochastique

3.3. Calcul de la fonction de répartition pour une variable aléatoire

3.4. Critères statistiques d’optimalité

3.5. Exemples de calcul

3.6. Optimisation stochastique par la théorie des jeux

Chapitre 4. Problèmes multicritères

4.1. Introduction

4.2. Trois problèmes

4.3. Deux sous-classes de problèmes

4.4. Méthodes de résolution

4.5. Optimisation simultanée pour le contrôle et la conduite des systèmes

4.6. Notes et commentaires

Chapitre 5. Méthodes et outils pour l’aide à la décision

5.1. Introduction

5.2. Exemples introductifs

5.3. Décisions et activités de décision – Concepts de base

5.4. Analyse des décisions

5.5. Notes et commentaires

Chapitre 6. Simulations pour l’aide à la décision

6.1. Problème de décision en environnement incertain

6.2. Position du problème

6.3. Principe de la simulation

6.4. Etudes de cas

Annexe 1. Générer des nombres pseudo-aléatoires

à distribution uniforme

Annexe 2. Générer des nombres pseudo-aléatoires à distribution souhaitée

Liste des algorithmes

Caractéristiques

Editeur : Lavoisier

Auteur(s) : Abdel EL KAMEL, Florin-Gheorghe FILIP, Dan Stefanoiu, Pierre Borne, Dumitru Popescu

Collection : Traité RTA, série Systèmes automatisés

Publication : 23 mai 2014

Edition : 1ère édition

Intérieur : Couleur, Noir & blanc

Support(s) : eBook [PDF], Contenu téléchargeable [PDF], Text (eye-readable) [PDF + WEB]

Contenu(s) : PDF

Protection(s) : Marquage social (PDF)

Taille(s) : 4,8 Mo (PDF)

Langue(s) : Français

Code(s) CLIL : 3069, 3052

EAN13 eBook [PDF] : 9782746289277

EAN13 (papier) : 9782746239272