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Préface

La photoémission joue un rôle clef dans la caractérisation des propriétés des nouveaux
matériaux et, à ce titre, l’ouvrage proposé par AntonioTejeda et Daniel Malterre arrive
à point nommé étant donné le dynamisme du domaine. Il permettra au lecteur d’avoir
une vue à la fois globale et approfondie de la technique, tant au niveau conceptuel
qu’expérimental.

Le dynamisme du domaine est évident si l’on évoque par exemple l’apport de la
photoémission à la compréhension de la structure et des propriétés des matériaux
prometteurs comme le graphène (ou ses proches cousins le silicène et le germanène)
ou les isolants topologiques pour ne citer que ceux donnant lieu au plus grand nombre
de publications du moment.

L’essor de la technique a été de plus renforcé avec le développement de nou-
velles sources (synchrotrons de grande brillance, lasers ultracourts), d’analyseurs de
très grande ouverture angulaire ou opérant dans des conditions autour de l’échan-
tillon se rapprochant du monde « réel » (études in situ, in operando). C’est ainsi qu’au
synchrotron SOLEIL, notre stratégie de développement nous a amenés à proposer un
grand nombre de lignes/montages expérimentaux permettant d’observer par photo-
émission des phénomènes dépendant du temps (de la seconde à la femto-seconde),
d’analyser des échantillons dans des conditions d’ultravide jusqu’à la pression
ambiante (ou presque), de sonder la structure électronique des échantillons jusqu’à
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Photoémission dans les solides

l’échelle nanométrique pour, au final, faire le lien entre propriétés fondamentales à
l’échelle atomique et propriétés macroscopiques.

Dans une première partie de l’ouvrage, les auteurs nous retracent l’histoire de la
photoémission en rappelant les concepts de base, avec une analyse détaillée des aspects
expérimentaux. Ils nous emmènent ensuite, par des exemples judicieusement choisis,
vers un approfondissement des concepts les plus actuels, ce qui fera de cet ouvrage une
référence indispensable pour l’étudiant comme pour le chercheur confirmé. Enfin, le
choix d’une rédaction en français positionne l’ouvrage de manière originale, comblant
certainement une lacune en la matière.

Paul Morin

Directeur scientifique

du synchrotron SOLEIL
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Introduction

La photoémission est la technique reine pour étudier les différents aspects de la
structure électronique des matériaux. Du point de vue fondamental, la photoémis-
sion permet une détermination expérimentale de la structure de bande. Mais elle
donne également accès à des informations uniques sur les effets à n corps comme
l’ont montré, ces deux dernières décennies, les nombreuses études sur des systèmes
à corrélation forte, les supraconducteurs à haute température critique ou les isolants
de Mott. Du point de vue appliqué, elle permet d’avoir des informations sur les
propriétés physicochimiques des surfaces comme la composition, le degré d’oxy-
dation des différents éléments, etc. mais également d’étudier des systèmes d’intérêt
technologique comme la barrière Schottky dans les interfaces métal-semiconducteur.
La photoémission s’avère donc une spectroscopie précieuse dans le développement
de la physique des surfaces et des nanosciences.

Deux prix Nobel ont récompensé des travaux sur la photoémission : le premier en
1921 pour l’explication fondamentale de l’effet photoélectrique par Albert Einstein ;
le second en 1981 pour les travaux de Kai Siegbahn sur l’utilisation spectrocopique
des photoélectrons à l’étude chimique des matériaux. Ces dernières années, la photo-
émission est devenue une technique mature. L’intensité des nouvelles sources syn-
chrotron ainsi que l’amélioration spectaculaire de l’optique des lignes de lumière
et des détecteurs d’électrons permettent désormais de mettre en évidence des
effets très fins associés à des échelles d’énergie très petites. C’est le cas par exemple
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des effets du couplage électron-phonon sur la dispersion des bandes de valence ou
des corrélations électroniques dans les fermions lourds. De nouveaux champs d’in-
vestigation se sont ouverts à la spectroscopie de photoémission : des détecteurs de
spin permettent d’avoir accès à la distribution des photoélectrons résolue en spin et
l’utilisation de lasers pulsés a donné naissance à la photoémission résolue en temps.
De même des progrès dans la résolution spatiale ont conduit à développer la micro-
scopie de photoémission qui conjugue informations structurales et spectroscopiques.

Ce livre introduit les bases de la photoémission mais présente bon nombre de déve-
loppements récents. Le premier chapitre sur l’histoire de la photoémission présente
comment le problème que posait l’effet photoélectrique a été résolu par le développe-
ment de la physique quantique pour devenir aujourd’hui la base de la spectroscopie
de photoémission. Le deuxième chapitre est consacré à l’introduction élémentaire
des concepts de base de la technique sans faire appel au formalisme mathématique.
Ce formalisme est développé dans le troisième chapitre qui décrit les concepts de
base de la photoémission, notamment sa modélisation dans une approche à n corps
et l’analyse détaillée des états de valence et des états de cœur. Après ce chapitre, nous
abordons les aspects expérimentaux, c’est-à-dire que nous décrivons les dispositifs
nécessaires pour effectuer des expériences de photoémission. En particulier, nous
discutons les sources de photons et les détecteurs d’électrons. Ce chapitre sur la tech-
nique expérimentale finit la partie I, « Généralités », qui est suivie d’une seconde
partie sur les exemples d’utilisation de la photoémission. Le chapitre 5 porte sur
l’analyse des niveaux de cœur. Les électrons de ces états électroniques sont très loca-
lisés et leurs fonctions d’onde et leurs énergies sont très proches de celles d’un atome
isolé. Cette propriété est à la base de l’intérêt des spectroscopies des états de cœur
puisque les énergies de liaison constituent une signature de la nature chimique de
l’émetteur. Le chapitre 6 présente des exemples de la diffraction de photoélectrons,
une manifestation de la dualité onde-corpuscule des photoélectrons qui se manifeste
dans la diffraction par le réseau atomique et qui permet d’obtenir des informa-
tions structurales à partir de l’anisotropie de l’intensité du signal de photoémission.
Le chapitre 7 fournit des illustrations sur la détermination expérimentale de la struc-
ture de bande, ainsi que d’autres informations plus subtiles sur la structure élec-
tronique, comme les mécanismes d’interactions entre les électrons et les excitations
collectives dans un cristal (phonons, magnons, etc.). Le livre se termine par quelques
annexes techniques.
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Partie I
Généralités

 





Histoire
de la photoémission

Le XXe siècle a été une période marquante pour le développement technologique de
l’humanité qui a connu plusieurs révolutions fondamentales. La physique est souvent
à l’origine de ces progrès. Ainsi, le développement des dispositifs électroniques qui
a révolutionné notre société a été possible grâce à la physique de l’état solide, par la
maîtrise des propriétés des matériaux mais également par l’utilisation des concepts les
plus modernes. Ainsi, les briques élémentaires de l’électronique comme le transistor
ne peuvent se comprendre sans l’utilisation de la mécanique quantique appliquée
aux solides.

La photoémission est une technique capable d’étudier les états électroniques des
solides. Elle permet de déterminer la structure de bandes indispensable à la com-
préhension des propriétés électroniques de la matière (métaux, semiconducteurs) et
donc le transport électronique dans les composants (diodes, transistors). Elle donne
également accès aux niveaux électroniques de cœur, caractéristiques de chaque élé-
ment. Ces signatures atomiques permettent d’obtenir la composition chimique d’un
matériau. Ce chapitre a pour objet de présenter l’histoire de la photoémission, en
particulier le mécanisme à l’origine de cette spectroscopie. Celui-ci résulte de l’effet
photoélectrique, qui a longtemps été une énigme de la physique avant d’être expli-
quée par Albert Einstein en 1905. Cette explication, fondée sur la quantification du
champ électromagnétique, a contribué de manière notable au développement de la
physique quantique.
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1.1 Origine de la photoémission : l’effet photoélectrique

La découverte de l’effet photoélectrique par Heinrich Rudolf Hertz en 1887 est
l’effet du hasard. En effet, Hertz avait conçu une expérience pour mettre en évi-
dence la propagation des ondes électromagnétiques prévue par la théorie de Maxwell.
Il avait construit un circuit oscillant émetteur et le récepteur était constitué par un
éclateur constitué de deux sphères métalliques creuses (fig. 1.1), la réception de l’onde
se manifestant par une étincelle entre les sphères. Hertz observa un effet inattendu :
l’intensité de l’étincelle variait avec l’éclairage du dispositif. Nous savons aujour-
d’hui qu’un rayonnement ultraviolet, qui conduit à l’émission d’électrons, stimule la
décharge et donc rend l’étincelle plus intense. Hertz a interposé entre la source et le
détecteur différents matériaux jouant le rôle de filtre et a ainsi démontré que l’effet
était dû au rayonnement ultraviolet.

Détecteur

Émetteur

Figure 1.1. Dispositif expérimental utilisé par Hertz pour mettre en évidence la propagation des
ondes électromagnétiques.

Un an plus tard, Wilhelm Hallwachs a étudié comment une plaque de zinc, initiale-
ment chargée, se décharge lorsqu’elle est éclairée [1]. En la reliant à un électroscope
pour étudier la cinétique de la décharge en présence de lumière (fig. 1.2), il a ainsi
montré qu’une plaque chargée négativement se décharge plus rapidement si elle est
illuminée par de la lumière ultraviolette. Par contre, si la plaque est chargée positi-
vement, on n’observe pas de décharge rapide.

Plus tard, Philipp Lenard a montré que les matériaux chargés négativement émettent
des électrons [2]. Il a éclairé une cathode (métallique), et a mesuré le nombre d’élec-
trons qui atteignent l’anode en fonction de la différence de potentiel V entre la
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Figure 1.2. Principe de l’expérience de Hallwachs avec un électroscope. L’angle entre les feuilles de
l’électroscope dépend de la charge accumulée. Lorsqu’on éclaire la plaque de zinc avec
un rayonnement ultraviolet, l’électroscope se décharge prouvant que des électrons sont
émis.

cathode et l’anode (fig. 1.3). Pour une valeur positive de V , tous les électrons sortant
de la cathode par effet photoélectrique sont attirés par l’anode et un courant est
mesuré. En revanche, pour une différence de potentiel négative, seuls les électrons
d’énergie cinétique suffisante pour vaincre la répulsion de l’anode contribuent au
courant. Le potentiel électrique qui annule le courant en repoussant tous les élec-
trons photoémis vers la cathode est appelé contre-tension. Le résultat surprenant
est que l’effet photoélectrique dépend de la fréquence de la lumière et non de son
intensité, l’intensité n’affectant que le nombre d’électrons photoémis et non leur éner-
gie cinétique. Ce comportement, existence d’une fréquence seuil, est complètement
inexplicable dans le cadre de l’électromagnétisme de Maxwell qui décrit les ondes
électromagnétiques par des champs, c’est-à-dire des grandeurs continues. Dans la
théorie de Maxwell, l’énergie dépend du carré de l’amplitude des champs et elle varie
de façon continue ce qui ne permet pas de comprendre l’existence d’une fréquence
seuil.

C’est Albert Einstein qui a expliqué l’effet photoélectrique. Pour y parvenir, il a
appliqué les idées que Planck avait utilisées pour expliquer la radiation du corps
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