Parcourir…

Les Sites à connaître

Abonnez-vous au flux RSS des nouveautés Flux RSS

  • Ajouter à NetVibes
  • Ajouter à Yahoo
  • Ajouter à Windows Live

Apprentissage connexionniste (Traité IC2, série Informatique et Systèmes d'Information)

 
    • eBook [PDF]

      103,00 €
    Formats disponibles →  Format PDF
     
     

    Avis des lecteurs  

     

    Présentation

    L'apprentissage connexionniste est une discipline scientifique qui recouvre plusieurs aspects d'études mathématiques, statistiques et algorithmiques. Les systèmes d'apprentissage connexionnistes (ou réseaux de neurones artificiels) sont des systèmes numériques permettant la modélisation de processus généraux par l'établissement de modèles fonctionnels. Ceux-ci sont identifiés à partir des observations du processus par des algorithmes dits ""d'apprentissage"" qui s'apparentent à des techniques d'estimation statistiques. Nés en informatique dans le domaine de l'intelligence artificielle, ils ont connu depuis le début des années 80 un développement intensif dû au succès rencontré dans une très large gamme d'applications. Les réseaux connexionnistes offrent une panoplie de techniques adaptatives pour de nombreux problèmes génériques : la classification, le classement, la modélisation, la prévision. Les applications de ces techniques sont très stratégiques, notamment pour la fouille de données et la reconnaissance des formes. Cet ouvrage présente les fondements théoriques et algorithmiques de l'apprentissage connexionniste. Il s'adresse aux étudiants, élèves-ingénieurs, enseignants, chercheurs, ingénieurs et industriel en informatique et mathématiques appliquées.

    Sommaire

    Avant-propos. Séparateurs connexionnistes linéaires : Perceptron et Adaline -Y. Bennani. Perceptron multi-couches -F. Badran, M. Lebbah, S. Thiria. Les réseaux récurrents -A. Aussem. Réseaux à fonctions de base radiales -E. Viennet. Réseaux à dictionnaires : Learning Vector Quantization -Y. Bennani. Cartes auto-organisatrices de Kohonen -M. Cottrell, S. Ibbou, P. Letrémy, P. Rousset. Cartes auto-organisatrices temporelles -F. Zehraoui, F. Fessant. Théorie de la résonance adaptative (Adaptive Resonance Theory) -F. Zehraoui. Techniques d'élagage et sélection de variables -M. Yacoub. Estimation et contrôle des performances en généralisation des réseaux de neurones -Y. Guermeur, O. Teytaud. Outils de simulation des réseaux connexionnistes -Y. Bennani. Index.

    Supports disponibles

    • eBook [PDF]

      Pdf PDF (Apprentissage connexionniste (Traité IC2, série Informatique et Systèmes d'Information)), 363 pages
      A télécharger après achat
    • Caractéristiques

    Référencer ce produit sur votre site

    → Copier en mémoire :